
Keyczar: A Cryptographic Toolkit

Arkajit Dey1 and Stephen Weis2

1 Massachusetts Institute of Technology, Cambridge, MA, USA 02139
2 Google Inc., Mountain View, CA, USA 94043

Abstract. Keyczar’s goal is to make it easier for application developers to safely use cryptography.
Keyczar defaults to safe algorithms, key lengths, and modes, and prevents developers from inadvertently
exposing key material. It uses a simple, extensible key versioning system that allows developers to easily
rotate and retire keys.

1 Introduction and Philosophy

The motivation for Keyczar grew out of a need to make cryptography easier to use for developers. Developers
improperly using cryptography can create serious security vulnerabilities. For instance, developers may use
obsolete algorithms, weak key lengths, improper cipher modes, or unsafely compose cryptographic operations.
Another common developer mistake is to fail to provision for key rotation or even to hard-code keys in source
code.

Keyczar’s goal is to address these issues by providing a simple application programming interface (API)
for developers that handles basic cryptographic details. Keyczar also provides a simple key versioning and
management system based on directories of human-readable flat files, which will be refered to as keysets.
More information about Keyczar is available from http://keyczar.org.

2 Using KeyczarTool

All Keyczar keys are generated with the stand-alone KeyczarTool utility. Two implementations of Key-
czarTool are available under org.keyczar.KeyczarTool in Java and keyczar.keyczart in Python.

2.1 KeyczarTool create

KeyczarTool must first create a new keyset using the create command. A newly created keyset will initially
contain just a metadata file, described in section 5.2.

KeyczarTool create requires location and purpose command-line flags that specify the location of
the key set and its purpose. Valid purposes are currently crypt and sign. The create command may also
take an optional name flag to give a newly created keyset a name. If the asymmetric flag is specified, the
newly created set will contain asymmetric keys of the specified algorithm. Currently DSA is supported for
keysets with a sign purpose. RSA is supported for both crypting and signing keysets.

Some example create commands:

• Create a symmetric signing (HMAC) keyset:
KeyczarTool create --location=/path/to/keyset --purpose=sign

• Create a symmetric crypting (AES) keyset named “Test”:
KeyczarTool create --location=/path/to/keyset --purpose=crypt --name=Test

• Create an asymmetric signing (DSA) keyset:
KeyczarTool create --location=/path/to/keyset --purpose=sign --asymmetric=dsa

2.2 KeyczarTool addkey

All Keyczar keys are created using the addkey command. This command requires a keyset location flag
and may optionally have status, crypter and size flags. Section 5.1 describes the meaning of the status
values, but briefly they are primary, active, and inactive. The default status is active. User-specified key sizes
are supported, although it is recommended that only default or larger key sizes are used.

The addkey command will create a new file in the keyset directory with an integer version number that
is one greater than the currently largest version. Version numbers start from 1 and are described in Section
5.3. For example, if the current keyset contains the key file 1, a new key version will be created in the file 2.
Some example addkey commands:

• Create a new primary key:
KeyczarTool addkey --location=/path/to/keyset --status=primary
• Create a new active key:
KeyczarTool addkey --location=/path/to/keyset

Keyczar supports encrypted keysets. The crypter flag may be used to encrypt a key set when adding a
new key. It will specify the location of an existing keyset which will be used to encrypt a newly generated
key:

• Create a new active key and encrypt it with another keyset:
KeyczarTool addkey --location=/path/to/keyset --crypter=/path/to/crypting/keys

2.3 KeyczarTool pubkey

Public keys in Keyczar are exported from existing asymmetric key sets. The pubkey command requires
both an existing location flag and a destination where public keys will be exported. If the keyset under
location was not created with an asymmetric flag, then a pubkey command will fail. An example pubkey
command works as follows:
KeyczarTool pubkey --location=/path/to/keyset --destination=/path/to/dest

2.4 KeyczarTool promote, demote, and revoke

The promote, demote, and revoke commands are used to change key status values. Each of these commands
require a location and version flag.

Promoting an active key will raise its status to primary, and promoting an inactive status will make it
primary. There can only be a single primary key in a given key set.

Similarly, demote will lower a primary key to active, and an active key to inactive. The revoke command
will only work for inactive status values. The revoke command will permenantly delete key material, so
should be used with caution.

Some example promote, demote, and revoke commands. Suppose that key version 1 initially has an
active status:

• Promote active version 1 to primary:
KeyczarTool promote --location=/path/to/keyset --version=1

• Demote primary version 1 back to active:
KeyczarTool demote --location=/path/to/keyset --version=1

• Demote active version 1 to inactive:
KeyczarTool demote --location=/path/to/keyset --version=1

• Revoke the inactive version 1:
KeyczarTool revoke --location=/path/to/keyset --version=1

3 Using Java Keyczar

The org.keyczar package contains four public classes that developers will use for cryptographic functions:
Crypter, Encrypter, Signer, and Verifier. All four classes are children of the abstract Keyczar class and
may be constructed either with a KeyczarReader or a simple String location of a keyset:

• Constructor: Keyczar(KeyczarReader reader)
• Constructor: Keyczar(String keySetLocation)

3.1 KeyczarReaders

The KeyczarReader interface may be implemented by any class that reads key material from a keyset.
Keyczar includes a KeyczarFileReader class that is used by the Keyczar(String keySetLocation) con-
structor to read files from the local disk. Developers may implement their own KeyczarReaders to read from
arbitrary sources and pass them to Keyczar constructors.

3.2 Encrypters

The Encypter class is only able to encrypt data. Encrypter objects will be initialized by passing it the
location of a crypting key set. Encrypters can encrypt plaintext encoded in UTF-8 Strings, byte arrays, or
ByteBuffers. Encrypters must be initialized with a keyset containing a primary status key to encrypt any
data.

• String encrypt(String input): Encrypt a string and return a WebSafeBase64 output ciphertext.
• byte[] encrypt(byte[] input): Encrypt a byte array and return the ciphertext as a byte array.
• int encrypt(ByteBuffer input, ByteBuffer output): Encrypt the contents of the input buffer and

write the ciphertext to the output. Return the number of bytes written.

3.3 Crypters

The Crypter class is a child of Encrypter and is also able to decrypt data. Crypter objects may only be
initialized by crypting key sets that contain keys able to decrypt, namely symmetric keys or private keys.
Crypters cannot be initialized with public keys. Crypters can decrypt ciphertext in WebSafeBase64 encoded
Strings, byte arrays, or ByteBuffers.

• String decrypt(String input): Decrypt a WebSafeBase64 string and return a UTF-8 encoded plain-
text output.

• byte[] decrypt(byte[] input): Decrypt a ciphertext byte array and return the plaintext as a byte
array.

• int decrypt(ByteBuffer input, ByteBuffer output): Decrypt the input ByteBuffer and write its
output into the given output ByteBuffer. Return the number of bytes written.

3.4 Verifiers

The Verifier class is only able to verify signatures. Verifier objects may be initialized by passing it the
location of any signing key set. It can verify signatures in WebSafeBase64 format, as byte arrays, or in
ByteBuffers:

• boolean verify(String data, String signature): Verifies a WebSafeBase64 encoded signature on
the given UTF-8 String of data. Returns a boolean representing whether the signature is valid.

• boolean verify(byte[] data, byte[] signature): Verifies a signature in a byte array on the given
byte array of data. Returns a boolean representing whether the signature is valid.

• boolean verify(ByteBuffer data, ByteBuffer signature: Verifies a signauture in a ByteBuffer on
the given ByteBuffer of data. Returns a boolean representing whether the signature is valid.

3.5 Signers

The Signer class is a child of the Verifier class and is also able to generate signatures by signing data.
Signer objects may only be initialized by keysets that are able to sign, namely symmetric keys and private
keys. Signers may not be initialized by public keys and may sign data in UTF-8 Strings, byte arrays, or
ByteBuffers. Signers must be initialized with a keyset containing a primary status key to sign any data.

• String sign(String data): Signs a UTF-8 string of data and returns a signatures as a WebSafeBase64
string.

• byte[] sign(byte[] data): Signs a byte array of data and returns a signature in a byte array.
• int sign(ByteBuffer data, ByteBuffer signature: Signs a ByteBuffer of input and writes the sig-

nature to the output ByteBuffer. Returns the number of bytes written.

3.6 Example: Putting KeyczarTool and Java Keyczar Together

The following command-line commands would create a new AES encrypting key:

KeyczarTool create --location=/aeskeys --purpose=crypt
KeyczarTool addkey --location=/aeskeys --status=primary

Then within a Java program, the following code would encrypt a string of data:

Crypter crypter = new Crypter(‘‘/aeskeys’’);
String ciphertext = crypter.encrypt(‘‘Some data to encrypt’’);

This same ciphertext would be decrypted with a call to Crypter.decrypt():

String plaintext = crypter.decrypt(ciphertext);

Using public keys is similar:

KeyczarTool create --location=/rsakeys --purpose=crypt --asymmetric
KeyczarTool addkey --location=/rsakeys --status=primary
KeyczarTool pubkey --location=/rsakeys --destination=/rsa-publickeys

Then in Java, we can encrypt using the public key set, but need the private key set to decrypt:

// Initialize an Encrypter with the public keys
Encypter encrypter = new Encrypter(‘‘/rsa-publickeykeys’’);
String ciphertext = encrypter.encrypt(‘‘Some data to encrypt’’);
...
// Initialize a Crypter with the private keys
Crypter crypter = new Crypter(‘‘/rsakeys’’);
String plaintext = crypter.decrypt(ciphertext);

Signing and verifying is similarily easy:

KeyczarTool create --location=/hmackeys --purpose=sign
KeyczarTool addkey --location=/hmackeys --status=primary

In Java:

Signer signer = new Signer(‘‘/hmackeys’’);
String signature = signer.sign(‘‘Some data to sign’’);
boolean verified = signer.verify(‘‘Some data to sign’’, signature);

See Section 8 for a more detailed walkthrough and sample test vectors.

4 Using Python Keyczar

The API for Python is very similar to the one for Java. The same four classes, Crypter, Encrypter, Signer,
and Verifier are in the keyczar.keyczar module and descend from the abstract Keyczar class. They have
the same use as their corresponding classes in Java. As in Java, they can constructed from a Reader or from
a string location of a keyset. The methods of construction are slightly different:

• Constructor: Keyczar(reader)
• Static Method: Keyczar.Read(key_set_location)

4.1 Readers

The abstract class Reader can be extended by any class that reads key material from a keyset. Python
Keyczar supplies a FileReader implementation that is used by the Keyczar.Read static method to read key
files from local disk. Just as in Java, developers can create their own Readers by extending from the base
class.

4.2 Differences from Java Keyczar

The main four public classes don’t treat strings, byte arrays, or btye buffers differently. The just deal in
strings which can either be UTF-8 or byte strings. And the output is also always a WebSafeBase64 string,
not a byte array.

• Encrypter.Encrypt: data (string) -> ciphertext (Base64 string)

• Crypter.Decrypt: ciphertext (Base64 string) -> data (string)

• Signer.Sign: data (string) -> sig (Base64 string)

• Verifier.Verify: data (string), sig (Base64 string) -> boolean

5 Keys

5.1 Statuses

As described in Section 2, Keyczar keys may have one of three status values: primary, active, inactive. Keys
with a primary status value are used to generate new cryptomaterial, that is, signatures or ciphertexts. Keys
of all status values may be used to verify or decrypt legacy data, but are not used to generate new data.

The idea is that a key will start its life as a primary key and be used to generate cryptographic output.
That key can be rotated by generating a new primary key value, and changing the existing primary key to
be active. Active keys will be kept around to verify and decrypt existing data, until they are inactive. A key
that is inactive is identical to an active key, except its usage statistics are collected by default. When a key
that is inactive is no longer used, it can be safely revoked and removed from a key set entirely.

5.2 Key Metadata

Each Keyczar keyset contains a metadata file that contains information about that set’s name, purpose, key
type, encrypted status, and a list of key version information (see Section 5.3). Valid purposes are encrypting,
verifying, encrypting and decrypting, and signing and verifying. Having the purpose value in the metadata
prevents a key from being used for an inappropriate purpose. For example, an RSA key that is typically used
for encrypting shouldn’t also be used for signing.

These purposes correspond to their respective public and symmetric/private keys, and are usable by the
Keyczar classes specified in the table below:

Purpose Public, Private, or Symmetric Class used by
Encrypting Public Encrypter or Crypter
Encrypting and Decrypting Private or Symmetric Crypter
Verifying Public Verifier or Signer
Verifying and Signing Private or Symmetric Signer

Each metadata file contains a specific key type which is the only type of key that set can contain.
Currently, the valid key types are AES, HMAC-SHA1, DSA Private, DSA Public, RSA Private, and RSA
Public.

It also contains a boolean flag indicating whether the key files are stored in encrypted format.
The metadata will contain a list of version information, which is described in Section 5.3. See Section 8

for a sample JSON metadata file.

5.3 Versions

Each key metadata (see Section 5.2) contains a list of version numbers corresponding to the keys contained
in a given keyset. Each version specifies an integral version number, a status of either active, primary, or
inactive, and a boolean specifying whether the key is exportable outside of Keyczar.

By default, key version numbers start from 1 and increase monotonically. However, key version numbers
may be any positive, non-zero integral values.

5.4 Output Headers

Each Keyczar output is tagged with a Keyczar-specific header. The header format is as follows:

Format Key Hash
1 byte 4 bytes

See Section 8 for a concrete example of an output header.

Version Byte The first byte of all output is a single byte representing the version of keyczar that generated
it. The current version byte is 1. All other values are reserved.

Key hash Each header includes 4-byte truncated SHA-1 hash of the raw key material itself. The following
values will be hashed for each key type:

• HMAC: 4-byte integer value representing the length of the HMAC key in bytes, followed by the actual
HMAC key bytes.

• AES: 4-byte integer value representing the length of the AES key, followed by the acutal AES key bytes,
followed by the 4-byte KeyHash of the attached HMAC key.

• DSA Public: 4-byte integer value representing the length of the X.509 representation of this key, followed
by the X.509 representation.

• DSA Private: Same as DSA Public.
• RSA Public: 4-byte integer value representing the length of the X.509 representation of this key, followed

by the X.509 representation.
• RSA Private: Same as RSA Public.

The SHA-1 output on each of these values is truncated to the first four bytes. For example: The truncated
4-byte truncated SHA-1 values:

1. The 4-byte truncated hash of SHA-1(””) = da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709 en-
coded in hexadecimal is da39a3ee.

2. The truncated hash of SHA-1(”The quick brown fox jumps over the lazy dog”) = 2fd4e1c6 7a2d28fc
ed849ee1 bb76e739 1b93eb12 is 2fd4e1c6 .

5.5 Key Formats

All key files are kept in JSON format and have a “size” field indicating the length of the key in bits. Additional
fields are described below for each key type.

HMAC HMAC keys also have the additional “hmacKeyString” field which is a Base64 representation of
the raw HMAC key bytes.

AES AES keys have an “aesKeyString” field which is a Base64 representation of the raw AES key bytes.
They also have an attached HMAC key, which is kept in a “hmacKey” field. There is an additional “mode”
field which currently only supports “CBC”.

Public RSA Public RSA keys have an “x509” field containing the Base64 representation of a X.509 public
key certificate.

Private RSA Private RSA keys contain a public RSA key, and a “pkcs8” field containing a Base64 repre-
sentation of a PKCS8 encoded RSA private key.

Public DSA Public DSA keys have an “x509” field containing the Base64 representation of a X.509 public
key certificate.

Private DSA Private DSA keys contain a public DSA key, and a “pkcs8” field containing a Base64 repre-
sentation of a PKCS8 encoded DSA private key.

6 Output Formats

6.1 Signatures

A Keyczar signature consists of a header (described in Section 5.4) followed by a algorithm-dependent
signature:

Header Sign(header | M)
5 bytes Algorithm-dependent length

(Note: | represents string concatenation.)

For example, HMAC keys will produce a 20-byte output, so have the form:

Header HMAC-SHA1(header | M)
5 bytes 20 bytes

6.2 Ciphertext

A Keyczar ciphertext contains a header (described in Section 5.4), an IV (if needed), the algorithm-dependent
ciphertext, and a signature on the preceding fields (for symmetric keys only):

Header IV (if any) Encrypt(M) Sign(header | IV | M) (if any)
5 bytes Algorithm-dependent Algorithm-dependent Algorithm-dependent

For example, 128-bit AES keys (which have an attached HMAC key) used in CBC mode would produce
the following output:

Header IV AES-CBC(M) HMAC-SHA1(header | IV | M)
5 bytes 16 bytes Algorithm-dependent 20 bytes

In contrast, RSA ciphertexts neither use IVs nor are signed. Thus, the RSA ciphertext format is:

Header RSA-OAEP(M)
5 bytes Single RSA block

7 Algorithm Details

These are the default key lengths, algorithms, and padding modes used:

• HMAC: Default keys are 256 bits. SHA1 used as the hash algorithm.
• AES: Default keys are 128 bits. 192 and 256 bit keys are also supported. CBC mode with PKCS#5

padding is used by default.
• DSA: DSA-SHA1 signing algorithm used by default. Default key size is 1024 bits.
• RSA Encryption: RSA-OAEP encryption is used. Default key size is 2048 bits. 1024, 768, and 512 bit

keys are also supported.
• RSA Signatures: RSA-SHA1 signing is used. Default key size is 2048 bits. 1024, 768, and 512 bit keys

are also supported.

8 Walkthrough and Sample Data

8.1 Creating an HMAC Keyset

A meta file is created by a call to the KeyczarTool create command. The following example was created
using the command:
KeyczarTool create --location=/path/to/keyset --name=test --purpose=sign

{
"name":"test",
"purpose":"SIGN_AND_VERIFY",
"type":"HMAC_SHA1",
"versions":[],
"encrypted":false
}

8.2 Generating a HMAC key

The following command will create a new key in an existing keyset:
KeyczarTool addkey --location=/path/to/keyset

This will add key version information to the existing meta file:

{
"name":"test",
"purpose":"SIGN_AND_VERIFY",
"type":"HMAC_SHA1",
"versions":[

{ "exportable":false,
"status":"ACTIVE",
"versionNumber":1}

],
"encrypted":false
}

It will also create a key version file named “1”:

{
"hmacKeyString":"9E7yslYyE4GHzq2WbppOOjGqBL7OGXxy5OsFSqBn2ao",
"size":256
}

8.3 Promoting a Key

Since no status was specified, key version 1 was created with an “active” status. That means it can be
used for verifying signatures, but not generating new signatures. Since we just created this key, there are no
existing signatures to verify. We have to promote it to a “primary” status before it’s useful:
KeyczarTool promote --location=/path/to/keyset --version=1

This will just alter the meta file to reflect the promotion:

{
"name":"test",
"purpose":"SIGN_AND_VERIFY",
"type":"HMAC_SHA1",
"versions":[

{
"exportable":false,
"status":"PRIMARY",
"versionNumber":1

}
],

"encrypted":false
}

We can generate a second key version with a primary status as follows:
KeyczarTool addkey --location=/path/to/keyset --status=primary

This create a new key version “2” with a primary status. Keysets can only have one primary key at a
time, so this automatically demotes key version “1” to be active:

{
"name":"test",
"purpose":"SIGN_AND_VERIFY",
"type":"HMAC_SHA1",
"versions":[

{
"exportable":false,
"status":"ACTIVE",
"versionNumber":1

},
{
"exportable":false,
"status":"PRIMARY",
"versionNumber":2

}
],

"encrypted":false
}

This creates another key version file “2” with the following contents:

{
"hmacKeyString":"-jkgTURAPoBr9SaQ5NLsFq2Xu5Z54RmnHYHlv1RVE7s",
"size":256

}

8.4 Key Hash Values

Note that the Base64 value of the “hmacKeyString” in the previous section decodes to the following 32 bytes
in hexadecimal format:

fa, 39, 20, 4d, 44, 40, 3e, 80,
6b, f5, 26, 90, e4, d2, ec, 16,
ad, 97, bb, 96, 79, e1, 19, a7,
1d, 81, e5, bf, 54, 55, 13, bb

These key bytes will be hashed to obtain a key identifier. The raw key bytes will be prefixed by a byte
representation of the length in bytes. In this case, the length is 32, so the following bytes (in hexadecimal
format) will be hashed with SHA-1:
SHA-1(00, 00, 00, 20, fa, 39, ..., 13, bb)

This produces the following 20-byte SHA1 output:

d8, 36, 36, 62, d0, 6d, cb, a7,
35, cd, 6c, 69, 33, 40, df, 87,
ce, da, d9, 8d

This is truncated down to the four bytes d8, 36, 36, 62, which is this key’s hash identifier. As described
in Section 5.4, all output will be prefixed with a version byte (currently equal to 1) and this identifier.

8.5 Signing and Verifying

To sign the string “Hello world” with our newly generated keys in Java, we would simply use the following
two lines of code.

Signer signer = new Signer("/path/to/keyset");
String signature = signer.sign("Hello world");

Keyczar will convert the string to the bytes to the following values:

48, 65, 6c, 6c, 6f, 20, 77, 6f, 72, 6c, 64

The output Base64 encoded signature would be the value Adg2NmIPTshpioGdunRaGRYWFNgheKmjvg, which
corresponds to the bytes:

1, d8, 36, 36, 62, f, 4e, c8,
69, 8a, 81, 9d, ba, 74, 5a, 19,
16, 16, 14, d8, 21, 78, a9, a3,
be,

Note that the first output byte is the version byte 1, followed by the 4-byte key hash identifier, and a
20-byte HMAC-SHA1 output. All signatures produced by this key will have this same identifier. Verification
of this signature is simple:

boolean isValid =
signer.verify("Hello world", "Adg2NmIPTshpioGdunRaGRYWFNgheKmjvg");

9 Licenses and Dependencies

Keyczar is available under an Apache 2.0 license [1]. Java Keyczar depends on the Google GSON package
[2]. It also relies on the Java’s javax.crypto package, which may not be available in all countries due to
local laws and regulations.

Python Keyczar depends on the Python Cryptography Toolkit [4] and simplejson [3].

10 Acknowledgements

Thanks to Ben Laurie, Marius Schilder, and Neil Daswani for their original design contributions. Thanks to
Sarvar Patel, Loren Kornfelder, Manuel Marquez Garrido, and Laura Krotowski for their various contribu-
tions.

References

1. Apache Software Foundation. Apache license, version 2.0. http://apache.org/licenses/LICENSE-2.0.
2. Google Inc. Google GSON project. http://code.google.com/p/google-gson/.
3. Ippolito, B. simplejson. http://pypi.python.org/pypi/simplejson.
4. Kuchling, A. Python crypto toolkit. http://www.amk.ca/python/code/crypto.html.

